The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development.
نویسندگان
چکیده
We have shown that a subset of early postmitotic progenitors that originates along the medial part of the epithelial somite gives rise to the primary myotome (Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998). Mech. Dev. 74, 59-73). Because of its postmitotic nature, further myotome expansion must be achieved by cell addition from extrinsic sources. Here we investigate the mechanism whereby the dermomyotome contributes to this process. Using several different methods we found that cell addition occurs from both rostral and caudal edges of the dermomyotome, but not directly from its dorsomedial lip (DML). First, labeling of quail embryos with [3H]thymidine revealed a time-dependent entry of radiolabeled nuclei into the myotome from the entire rostral and caudal lips of the dermomyotome, but not from the DML. Second, fluorescent vital dyes were injected at specific sites in the dermomyotome lips and the fate of dye-labeled cells followed by confocal microscopy. Consistent with the nucleotide labeling experiments, dye-labeled myofibers directly emerged from injected epithelial cells from either rostral or caudal lips. In contrast, injected cells from the DML first translocated along the medial boundary, reached the rostral or caudal dermomyotome lips and only then elongated into the myotome. These growing myofibers had always one end attached to either lip from which they elongated in the opposite direction. Third, following establishment of the primary myotome, cells along the extreme dermomyotome edges, but not the DML, expressed QmyoD, supporting the notion that rostral and caudal boundaries generate myofibers. Fourth, ablation of the DML had only a limited effect on myotomal cell number. Thus, cells deriving from the extreme dermomyotome lips contribute to uniform myotome growth in the dorsoventral extent of the myotome. They also account for its expansion in the transverse plane and this is achieved by myoblast addition in a lateral to medial direction (from the dermal to the sclerotomal sides), restricting the pioneer myofibers to the dermal side of the myotome. Taken together, the data suggest that myotome formation is a multistage process. A first wave of pioneers establishes the primary structure. A second wave generated from specific dermomyotome lips contributes to its expansion. Because dermomyotome lip progenitors are mitotically active within the epithelia of origin but exit the cell cycle upon myotome colonization, they can only provide for limited myotome growth and subsequent waves must take over to ensure further muscle development.
منابع مشابه
The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium.
The cellular and molecular mechanisms that govern early muscle patterning in vertebrate development are unknown. The earliest skeletal muscle to organize, the primary myotome of the epaxial domain, is a thin sheet of muscle tissue that expands in each somite segment in a lateral-to-medial direction in concert with the overlying dermomyotome epithelium. Several mutually contradictory models have...
متن کاملThe roles of cell migration and myofiber intercalation in patterning formation of the postmitotic myotome.
We have previously found that the postmitotic myotome is formed by two successive waves of myoblasts. A first wave of pioneer cells is generated from the dorsomedial region of epithelial somites. A second wave originates from all four edges of the dermomyotome but cells enter the myotome only from the rostral and caudal lips. We provide new evidence for the existence of these distinctive waves....
متن کاملCharacterization of the early development of specific hypaxial muscles from the ventrolateral myotome.
We have previously found that the myotome is formed by a first wave of pioneer cells generated along the medial epithelial somite and a second wave emanating from the dorsomedial lip (DML), rostral and caudal edges of the dermomyotome (Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998a) Mech. Dev. 74, 59-73; Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998b) Development 125, 4259-4271). In this st...
متن کاملMorphogenesis and Morphology of the Neck and Trunk Muscles in Humans
At about the 20-30 day of embryonic life "Somites" start to appear. In the middle of the fourth week the dorsal portion of each Somite differentiates into an epitheliallyarranged mass of cells called dermomyotome (from which the skin and muscles originate). The lateral part of the sermomyotome then proliferates to form dermatome (from ·which originates the derm and Hypoderm). The medial ...
متن کاملLocation and growth of epaxial myotome precursor cells.
The skeletal muscle progenitor cells of the vertebrate body originate in the dermomyotome epithelium of the embryonic somites. To precisely locate myotome precursor cells, fluorescent vital dyes were iontophoretically injected at specific sites in the dermomyotome in ovo and the fates of dye-labeled cells monitored by confocal microscopy. Dye-labeled myotome myofibers were generated from cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 21 شماره
صفحات -
تاریخ انتشار 1998